MODULE 1:
INTRODUCTION TO
OPERATING SYSTEM

SYLLABUS

Introduction, System Components, Open-Source
Operating Systems, Operating System Services,
System Calls, Process Management- Process Structure,
Process states, Types of Schedulers, Scheduling
Criteria, Scheduling algorithms. Deadlock and
Starvation- Principles of Deadlock, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection
and Recovery. Linux Environment, Fundamental
Commands. System Shell and User Shells.

WHAT IS AN OPERATING SYSTEM?

A program that acts as an intermediary between a user
of a computer and the computer hardware

Operating system goals:

e Execute user programs and make solving user
problems easier

e Make the computer system convenient to use

e Use the computer hardware in an efficient
manner

Computer system can be divided into four
components:

e Hardware - provides basic computing resources:
CPU, memory, |/O devices

e Operating system - Controls and coordinates use
of hardware among various applications and
users

e Application programs - define the ways in which
the system resources are used to solve the
computing problems of the users: Word

processors, compilers, web browsers, database
systems, video games
e Users: People, machines, other computers

h 4 ¥ Y Y

compiler assembler text editor o database
system

system and application programs

operating system

computer hardware

WHAT OPERATING SYSTEMS DO

e Users want convenience, ease of use and good
performance
= Don’t care about resource utilization
e But shared computer such as mainframe or
minicomputer must keep all users happy

e Users of dedicated systems such as workstations

have dedicated resources but frequently use
shared resources from servers.

e Handheld computers are resource-poor,
optimized for usability and battery life.

e Some computers have little or no user interface,
such as embedded computers in devices and
automobiles.

DEFINITION OF OS

e OSis aresource allocator
e OSis acontrol program

“THE ONE PROGRAM RUNNING AT ALL
TIMES ON THE COMPUTER” IS THE
KERNEL.

Everything else is either a system program (ships with
the operating system) , or an application program.

COMPUTER STARTUP

e Bootstrap program is loaded at power-up or
reboot.

e Typically stored in ROM or EPROM, generally
known as firmware.

e Initializes all aspects of the system.

e Loads the operating system kernel and starts
execution.

Bootstrap program

Dperating system

Operating system & Load 005

Devices

Bootstrap process

Operating
system

Disk
| Bootstrap program runs

2. Operating system 1s loaded

3. Operating system runs

Memory

COMPUTER SYSTEM
ORGANIZATION

e Computer-system operation:
= One or more CPUs and device controllers
connect through a common bus, providing
access to shared memory.
= Concurrent execution of CPUs and devices
occurs, competing for memory cycles.

mouse keyboard printer monitor

l_ on-line —\

disks FAARERRRARRRAN
E a E a é _ B\ |

USB controller graphics
adapter

disk
controller

memory

e |/O devices and the CPU can execute
concurrently.

e Each device controller is responsible for a
particular device type.

e Each device controller has a local buffer.

e CPU moves data from/to main memory to/from
local buffers.

e |/O occurs from the device to the local buffer of
the controller.

e The device controller informs the CPU that it has
finished its operation by causing an interrupt.

MEMORY

DEVICE DRIVER

TRANLSATION

PROTOCOL CONVERSION

LOW-LEVEL INSTRUCTIONS
(eg). Move Print Head,
(eq). Move Print Head, =
Feed Paper, Heat Ink. 'l

ROLL SHEETS

\

PRINT HEAD
MOVEMENT

Monitor Keyboard USB Drive Disk Drive

Memory Video Keyboard UsSB Disk
Controller Controller Controller Controller Controller

1. CONTROLLER STORES DATA
TEMPORARLY IN BUFFER

KEY PRESSES

/—‘ (ELECTRICAL SIGNALS)

KEYBOARD

3. CONTROLLER REQUESTS CPU ATTENTION
TO DUMP BUFFER INTO MAIN (INTERRUPT

KEYBOARD CONTROLLER
WITH LOCAL BUFFER
(FIFO QUIUE)

H

E
L
0

]
|

MAIN MEMORY (RAM)

ox10

oxlé

exl]

ocic

0x14 |OoxlG

»

CPU

CPU BUS /
INTERRUPUT
CONTROLLER)

ox10

orid

014

118

11€

11C

CPU BUS

DATA TRANSFER (SERIAL PROTOCOL)

20

20

20

24

INTERRUPTS

e Interrupt transfers control to the interrupt
service routine (ISR), generally through the
interrupt vector, which contains the addresses of

all service routines.
e Interrupt architecture must save the address of

the interrupted instruction.

e Atrap or exception is a software-generated
interrupt caused either by an error or a user
request.

e An operating system is interrupt-driven.

Interupt Service Routine (ISR)
& Interupt Vector

1. INTERRLUET
HARDWARE DEY

HALT CURRENT TASK
SAVE CONTEXT

3. LOOK P ISR] ;]
ISR ADDESS | |

& RESUME TASK

Ik, card | ‘

. RESTORE COMNTENXT _+|

user
process
executing

I/O interrupt
processing

/O idle
device

transferring

l/O transfer /O transfer
request done request done

DIRECT MEMORY ACCESS (DMA)

e Used for high-speed |I/O devices able to transmit
information at close to memory speeds
e Device controller transfers blocks of data from

buffer storage directly to main memory without

CPU intervention
e Only one interrupt is generated per block, rather

than the one interrupt per byte

<— instruction execution —»

| cycle instructions
thread of execution and
«— (ata movement —» T

O
T
@

5

=

g lep —»
1dn.iaiu] ——»

Ly
O
—
(D
L2
—
(D
wn
——t

COMPUTER-SYSTEM
ARCHITECTURE

e Most systems use a single general-purpose
processor.

e Most systems also have special-purpose
processors.

e Multiprocessor systems are growing in use and
Importance.

e Also known as parallel systems or tightly-
coupled systems.

Advantages include:

e Increased throughput

e Economy of scale

e Increased reliability - graceful degradation or
fault tolerance

Two types:

e Asymmetric Multiprocessing (AMP): Each
processor is assigned a specific task.

e Symmetric Multiprocessing (SMP): Each
processor performs all tasks.

SYMMETRIC MULTIPROCESSING
ARCHITECTURE

CPU, CPU; CPUs

registers registers registers

cache cache cache

memory

A DUAL-CORE DESIGN

e Multi-chip and multicore
e Systems containing all chips
e Chassis containing multiple separate systems

CPU coreg CPU coreq4

regisiers registers
cache cache

-

i

w3

x3

OS scheduler

CLUSTERED SYSTEMS

e Multiple systems working together
e Usually share storage via a Storage-Area Network
(SAN)

computer

computer

computer

storage area
network

e Provide high availability and survive failures

e Asymmetric clustering: one machine in hot-
standby mode (monitors all)

e Symmetric clustering: multiple active nodes
monitoring each other

e Some clusters are for High-Performance
Computing (HPC)
e Applications must support parallelization

e Use Distributed Lock Manager (DLM) to prevent
conflicting operations

MULTIPROGRAMMING
(BATCH SYSTEM)

e Needed for efficiency

e Asingle user cannot keep CPU and I/O devices
busy at all times

e Multiprogramming organizes jobs so CPU always
has one to execute

e Asubset of jobs is kept in memory

e Job scheduling selects and runs one job at a time

e When a job waits (e.g., for 1/0), OS switches to
another job

[OPERATING SYSTEM

operating system

TIME SHARING (MULTITASKING)

e Logical extension in which CPU switches jobs so
frequently that users can interact with each job
while it is running, creating interactive
computing

e Response time should be <1 second

e Each user has at least one program executing in
memory > process

e |f several jobs ready to run at the same time >
CPU scheduling
e |f processes don’t fit in memory, swapping moves

them in and out to run
e Virtual memory allows execution of processes not

completely in memory

OPERATING SYSTEM

Q0

CPU

OPERATING-SYSTEM
OPERATIONS

e Interrupt-driven: hardware and software
e Hardware interrupt: generated by devices
e Software interrupt (exception/trap):
= Software errors (e.g., division by zero)
m Requests for OS services
e Other process issues: infinite loops, processes
modifying each other or the OS

Exception
Line

InterrupI CPU
Lines

Interrupt Line
10 (J

DUAL-MODE
OPERATION

e Allows OS to protect itself and other system
components

e Two modes: User mode and Kernel mode

e Mode bit provided by hardware to distinguish
user vs. kernel execution

e Some instructions are privileged, only executable
in kernel mode

e System call switches mode to kernel; return
resets to user
e Modern CPUs support multi-mode operations

e Example: Virtual Machine Manager (VMM) mode
for guest VMs

KERNEL MODE

AEERRERRN AERREERR
- - - 0| =
= - = =
= = = =
= - = -
= = = =
Bl = - =

IEENNEE IEEENNEDR

USER MODE

KERNEL MODE [0 devices

AEERERRR
S

user process

user mode

. ‘mode bit = 1
user process executing calls system call return from system call ()

K | return
erne mode bit = 0 mode bit = 1
kernel mode

execute system call (mode bit = 0)

TIMER IN OPERATING SYSTEMS

e Prevents infinite loops and processes hogging
resources

e Timer set to interrupt after a defined time period

e Uses a counter decremented by the physical
clock

e OS sets the counter (privileged instruction)

e When counter reaches zero - interrupt generated

e Ensures OS can regain control or terminate long-
running processes

user process

user mode

. ‘mode bit = 1
user process executing calls system call return from system call ()

K | return
erne mode bit = 0 mode bit = 1
kernel mode

execute system call (mode bit = 0)

COMPUTING
ENVIRONMENTS

TRADITIONAL COMPUTING

e Single-user or batch systems
e Centralized processing on mainframes or PCs
e Jobs executed sequentially, often non-interactive

MOBILE COMPUTING

e Supports computing on handheld or portable
devices

e Enables wireless connectivity, mobility, and
anytime access

e Applications optimized for battery and resource
constraints

DISTRIBUTED COMPUTING

e Multiple systems work together over a network
e Share resources and collaborate on tasks
e Provides scalability, fault tolerance, and parallel

processing

The distributed computing process

CLIENT-SERVER COMPUTING

e Clients request services; servers provide them
e Centralized control with multiple clients accessing

shared resources
e Common in business applications and web

services

client
C desktop

-""‘—-—-_____.—-"'"-

— T

client

'_',.-l'"

laptop
-
-~ -HH-F._-_-_H_H“‘- ‘
client 1
\smartphone/

PEER-TO-PEER (P2P)
COMPUTING

e All nodes act as both clients and servers
e Resources and services shared directly among

peers
e Examples: file-sharing networks, blockchain
networks

=

(_client (_client)

VIRTUALIZATION

e Creates virtual versions of hardware, OS, storage,
or networks

e Allows multiple VMs on a single physical host

e Improves resource utilization and isolation

. ¥
programming <

wirtual machine
manager

hardware
hardware

CLOUD COMPUTING

e On-demand access to compute, storage, and
applications over the internet

e Provides scalability, pay-as-you-go models, and
remote accessibility

e Types: laaS, Paa$s, SaaS

virtual virtual

: : storage
machines| |machines

customer
.
u
~.req uests

Ll

Y
cloud

customer
interface

! cloud
s management

~. _——s_commands
e o™

\

cloud
managment
Services

REAL-TIME & EMBEDDED
SYSTEMS

e Designed to respond to events within strict
timing constraints
e Embedded in devices like sensors, controllers,

and industrial machines
e Critical in applications like automotive, medical,

and avionics systems

OPERATING SYSTEM
SERVICES

WearhaniN\ VINTERIN | Il O iI\V IR

User Interface (Ul): CLI, GUI, or batch
Program Execution: load, run, and terminate
programs

1/O Operations: access files or I/O devices
File-System Manipulation: read/write files,
create/delete directories, permissions, search,
listing

Communications: exchange information via
shared memory or message passing

Error Detection: monitor CPU, memory, 1/O, and
user programs; ensure consistent computing

e Debugging Facilities: assist users and
programmers

SYSTEM-ORIENTED SERVICES

e Resource Allocation: assign CPU, memory,
storage, |/O devices to concurrent users/jobs

e Accounting: track user resource usage
e Protection & Security:

= Control access to resources

= Prevent interference among processes

s User authentication and protection from

external threats

user and other system programs

GUI batch command line

user interfaces

system calls

program
execution

/0
operations

file

communication
systems

resource
allocation

accounting

error
detection

services

protection

and
security

operating system

hardware

SYSTEM CALLS

Programming Interface to OS Services

High-level languages like C/C++ provide interfaces to
OS services.
Programs usually use an Application Programming
Interface instead of calling system calls directly.

Access via APlIs

APIs offer easier function calls and abstractions,
reducing complexity and improving portability across
systems.

Common APIs

Win32 API for Windows systems
POSIX API for UNIX/Linux/Mac OS X
Java APl for programs running on the JVM

source file

-

destination file

e Example System Call Sequence D

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
If file doesn't exist, abort

Create output file
If file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally y

o

SYSTEM CALL MAPPING

UNIQUE CALL NUMBERS

Each system call has a specific number used to index a
system-call table.

SYSTEM CALL INTERFACE

LOOKUP AND EXECUTION

The system-call interface checks the table and invokes
the corresponding kernel function.
It returns the status and any output produced by the
call.

PROGRAMMER VIEW

NO NEED TO KNOW INTERNAL IMPLEMENTATION

The programmer only needs to follow the APl and
understand the OS behavior.
Internal mechanics of the system call remain hidden.

API ABSTRACTION

RUN-TIME SUPPORT LIBRARY

Most interaction with the OS is managed by a run-time
support library that comes with the compiler.

user application

system call interface

-

open ()

Implementation
of open ()
system call

return

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask()
chown()

- u Ivolv‘lll III'VI\IIID rllll‘l\l

#include <stdio.h>
int main ()

[

~— printf ("Greetings”);

return O;

)

standard C library

write ()
_ 4
4 write ()
system call

OPERATING SYSTEM STRUCTURE

A general-purpose operating system is a very large
program.

Different structural approaches include:

e Simple structure (e.g., MS-DOS)

e More complex monolithic structure (e.g., UNIX)
e Layered design providing abstraction

e Microkernel design (e.g., Mach)

MS-DOS Structure Design Goal MS-DOS was created
to offer maximum functionality using minimal space.

Lack of Modularity Organization It was not divided
into separate, well-defined modules.

Interface Characteristics Poor Separation Although
some structure exists, the interfaces and functionality
levels are not clearly separated.

V

application program
resident system program -

MS-DOS device driversi

ROM BIOS device drivers

LINUAJIJIITLRLINVNI JINJVGOVI VINL J

ARCHITECTURE

Kernel

(the users)

compilers and interpreters

shells and commands

system libraries

system-call interface to the kernel

signals terminal
handling
character |/0O system
terminal drivers

file system
swapping block I/O
system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

kernel interface to the hardware

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

GARY KILDALL

EARLY BACKGROUND

Gary Kildall was an American computer scientist and
pioneer of personal computing.
He created CP/M, the first widely adopted OS for
microcomputers.

CP/M AND
INNOVATION

BREAKTHROUGH

CP/M provided a standard OS interface for early 8-bit
machines.
It inspired future OS designs, including MS-DOS.

IBM VISITS DIGITAL
RESEARCH

MISSED MEETING

In 1980, IBM approached Digital Research to license
CP/M for its upcoming PC.
A meeting failed due to scheduling and contract
disagreements.

MICROSOFT STEPS
1\

BILL GATES’ OPPORTUNITY

With no agreement from Digital Research, IBM turned
to Microsoft.
Microsoft acquired QDOS, modified it, and delivered
what became MS-DOS.

WHY | MENTIONED

Kildall is often discussed when explaining MS-DOS
because:

e CP/M was its inspiration
e Asingle failed business deal changed the course
of computing history

WHAT IS A PROCESS?

e A processisaprogram thatis currently being
executed.

e |ts execution moves step-by-step in a sequential
flow.

PROGRAM VS
PROCESS

Program

e Passive
e Stored on disk as an executable file

Process

e Active In memory
e Has registers, stack, resources, etc.

WHEN DOES A
PROGRAM BECOME A
PROCESS?

e When the executable file is loaded into memory.
e Operating system creates a process structure for
It.

MULTIPLE
PROCESSES FROM
ONE PROGRAM

e The same program may run multiple times.
e Each execution is a different process.

e Example: Many users running the same
application independently.

PROCESS STATES

e As a process runs, its state changes.
e Typical states used by operating systems.

PROCESS STATES

e New: Process is being created

e Running: Instructions are being executed
e Waiting: Waiting for an event

e Ready: Waiting for CPU assignment
 Terminated: Execution completed

admitted interrupt

scheduler dispatch

I/O or event completion /O or event wait

process P,

operating system process P,

interrupt or system call

executing / l

~

»idle

-

executing \

save state into PCBj

®
L]

reload state from PCB,

/-

interrupt or system call

| A

save state into PCB,

L

reload state from PCB,

executing

Process Control Block (PCB) contains Information

associated with each process (also called task control
block)

Process state - running, waiting, etc

Program counter - location of instruction to next
execute

« CPU registers — contents of all process centric
registers

«CPU scheduling information- priorities, scheduling
gueue pointers

Memory-management information - memory
allocated to the process

«Accounting information - CPU used, clock time
elapsed since start, time limits

o|/O status information - I/O devices allocated to
process, list of open files

process state
process number
program counter

registers

list of open files

CPU SCHEDULING
BASICS

e Aim: maximize CPU usage by fast process
switching

e Scheduler chooses the next process for CPU
e Processes move between different queues

SCHEDULING
QUEUES

e Job queue: all system processes

e Ready queue: processes in memory waiting for
CPU

e Device queues: processes waiting for /O

ready queue

I/O queue

/O request

time slice
expired

child
executes

Interrupt

OCCUTrs

fork a
child

wait for an
interrupt

SHORT-TERM
SCHEDULER

e Chooses the next process for the CPU
e Allocates processor time

e Often the only scheduler in simple systems
e Runs very frequently (milliseconds), must be fast

LONG-TERM
SCHEDULER

e Decidesw
e Runs muc
e Can afforoc

nich processes enter the ready queue
n less often (seconds or minutes)

slower decision-making

TYPES OF
PROCESSES

e |/O-bound: spends more time performing
input/output, many short CPU bursts

e CPU-bound: spends most time computing, few
long CPU burst.

CPU SCHEDULING
METRICS

TURNAROUND TIME

Time a process takes from arrival to completion.

Formula:
Turnaround time = Completion time -
Arrival time

WAITING TIME

Time a process waits in the ready queue before CPU
execution.

Formula:
Waiting time = Turnaround time - Burst
time

AVERAGE WAITING
TIME

Average time all processes spend waiting in the ready
queue.

Formula:
Average waiting time = (Total waiting
time of all processes) / (Number of
processes)

RESPONSE TIME

Time from process arrival until its first CPU execution.

Formula:
Response time = Start time - Arrival time

THROUGHPUT

Number of processes completed per unit time.

Formula:
Number of processes

Throughput

completed / Total execution time

Ql

Process Arrival Time BurstTime

Pl 0 5
P2 2 3
P3 4 7
P4 6 2

Q2

Process Arrival Time BurstTime

Pl 1 4
P2 3 6
P3 5 2
P4 I 8

Q3

Process Arrival Time BurstTime

P1 0 9
) 1 5
D3 3 1
P4 4 4

or

Process Arrival Time Burst Time
P1 2 6
P2 4 3
3 5 9
8 2

P4

Q5

Process Arrival Time Burst Time

Pl 0 3

P2 1

3 3
6

> O DN

P4

DEADLOCK

MULTIPLE
PROCESSES

Several processes run concurrently and compete for
limited resources.

RESOURCE
REQUESTS

A process asks for resources.
If unavailable, it moves to a wait state.

WAIT STATE ISSUE

A waiting process may stay stuck if the resources it
needs are held by other waiting processes.

RESULT

Processes may never resume — a situation that can
lead to deadlock.

SYSTEM MODEL

RESOURCE REQUEST
RULE

A process must request a resource before using it and
release it after use.

RESOURCE LIMITS

A process cannot request more instances of a resource
than the system actually has.

EXAMPLE

If the system has 2 printers, no process can request 3
printers.

DEADLOCK
CHARACTERIZATION

Deadlock occurs when processes are stuck waiting for
resources held by each other, with no progress
possible.

FOUR NECESSARY
CONDITIONS

1. Mutual Exclusion - Resources are non-shareable.
2. Hold and Wait - A process holds one resource and

waits for another.

3. No Preemption - Resources cannot be forcibly
taken away.

4. Circular Wait - A circular chain of processes
exists, each waiting for a resource held by the
next.

RESOURCE
ALLOCATION GRAPH

DEFINITION

A deadlock can be represented using a directed
system resource-allocation graph.

GRAPH STRUCTURE

The graph has:

e Vertices (V)
e Edges (E)

VERTEX TYPES

Vertices are divided into two sets:

e P={P1,P2,...,Pn}- all active processes
e R={R1,R2,...,Rm} - all resource types

REQUEST EDGE

Pi->Rj
Process Pi has requested resource Rj and is waiting for
it.

ASSIGNMENT EDGE

Rj > Pi
An instance of resource Rj is allocated to process Pi.

EDGE TYPES

e Pi~> Rj-> Request edge
e Rj > Pi>Assignment edge

Process

O O
O O

Resource Type with 4 instances

Pi requests instance of Rj

—>

1 [
H

R.

Pi is holding an instance of Rj

RAG WITH DEADLOCK

Graph With A Cycle But No Deadlock

(7

-l
e!‘

A

METHODS FOR
HANDLING
DEADLOCKS

1. PREVENTION /
AVOIDANCE

Use protocols that ensure the system never enters a
deadlock state. (before occurance)

2. DETECTION &
RECOVERY

Allow deadlocks to occur, then detect and recover
from them. (after occurance)

3. IGNORE
DEADLOCKS

lgnore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX

DEADLOCK
PREVENTION

Restrain the ways request can be made

e Mutual Exclusion - not required for sharable
resources (e.g., read-only files); must hold for non-
sharable resources

e Hold and Wait - must guarantee that whenever a
process requests a resource, it does not hold any
other resources

= Require process to request and be allocated
all its resources before it begins execution, or
allow process to request resources only when
the process has none allocated to it.

= Low resource utilization; starvation possible

e No Preemption -

» |f a process that is holding some resources
requests another resource that cannot be
immediately allocated to it, then all
resources currently being held are released

e Preempted resources are added to the list of
resources for which the process is waiting

e Process will be restarted only when it can regain
its old resources, as well as the new ones that it is
requesting

e Circular Wait - impose a total ordering of all
resource types, and require that each process

requests resources in an increasing order of
enumeration

DEADLOCK
AVOIDANCE

Requires that the system has some additional a priori
information available

e Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

e The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

e Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

e For example, in a system with one tape drive and
one printer, we might be told that process P will
request first the tape drive, and later the printer,
before releasing both resources. Process Q, on the
other hand, will request first the printer, and then
the tape drive.

SAFE STATE

When a process requests an available resource, system
must decide if immediate allocation leaves the system
in a safe state

e |f a system isin safe state -> no deadlocks

e |f asystem isin unsafe state -> possibility of
deadlock

e Avoidance -> ensure that a system will never enter
an unsafe state.

deadlock

SINGLE INSTANCE OF ARESOURCE TYPE

e Use aresource-allocation graph
MULTIPLE INSTANCES OF A RESOURCE TYPE

e Use the banker’s algorithm

BANKER'S ALGORITHM

Q1 Total resources = (A=11, B=6, C=9, D=T7)

Process Allocated Max Need

Q2 Available=(A=3,B=2,C=1,D=2)

Process Allocated

Refer https://os.surajgowda.in/scheduling-algo to
verify answers

https://os.surajgowda.in/scheduling-algo

