
MODULE 1:
INTRODUCTION TO

OPERATING SYSTEM

SYLLABUS
Introduction, System Components, Open-Source
Operating Systems, Operating System Services,

System Calls, Process Management- Process Structure,
Process states, Types of Schedulers, Scheduling
Criteria, Scheduling algorithms. Deadlock and
Starvation- Principles of Deadlock, Deadlock

Prevention, Deadlock Avoidance, Deadlock Detection
and Recovery. Linux Environment, Fundamental

Commands. System Shell and User Shells.

WHAT IS AN OPERATING SYSTEM?
A program that acts as an intermediary between a user

of a computer and the computer hardware

Operating system goals:

Execute user programs and make solving user
problems easier
Make the computer system convenient to use
Use the computer hardware in an efficient
manner

Computer system can be divided into four
components:

Hardware – provides basic computing resources:
CPU, memory, I/O devices
Operating system - Controls and coordinates use
of hardware among various applications and
users
Application programs – define the ways in which
the system resources are used to solve the
computing problems of the users: Word

processors, compilers, web browsers, database
systems, video games
Users: People, machines, other computers

WHAT OPERATING SYSTEMS DO
Users want convenience, ease of use and good
performance

Don’t care about resource utilization
But shared computer such as mainframe or
minicomputer must keep all users happy

Users of dedicated systems such as workstations
have dedicated resources but frequently use
shared resources from servers.
Handheld computers are resource-poor,
optimized for usability and battery life.
Some computers have little or no user interface,
such as embedded computers in devices and
automobiles.

DEFINITION OF OS
OS is a resource allocator
OS is a control program

“THE ONE PROGRAM RUNNING AT ALL
TIMES ON THE COMPUTER” IS THE

KERNEL.

Everything else is either a system program (ships with
the operating system) , or an application program.

COMPUTER STARTUP
Bootstrap program is loaded at power-up or
reboot.
Typically stored in ROM or EPROM, generally
known as firmware.
Initializes all aspects of the system.
Loads the operating system kernel and starts
execution.

COMPUTER SYSTEM
ORGANIZATION

Computer-system operation:
One or more CPUs and device controllers
connect through a common bus, providing
access to shared memory.
Concurrent execution of CPUs and devices
occurs, competing for memory cycles.

I/O devices and the CPU can execute
concurrently.
Each device controller is responsible for a
particular device type.
Each device controller has a local buffer.
CPU moves data from/to main memory to/from
local buffers.
I/O occurs from the device to the local buffer of
the controller.
The device controller informs the CPU that it has
finished its operation by causing an interrupt.

INTERRUPTS
Interrupt transfers control to the interrupt
service routine (ISR), generally through the
interrupt vector, which contains the addresses of
all service routines.
Interrupt architecture must save the address of
the interrupted instruction.
A trap or exception is a software-generated
interrupt caused either by an error or a user
request.
An operating system is interrupt-driven.

DIRECT MEMORY ACCESS (DMA)
Used for high-speed I/O devices able to transmit
information at close to memory speeds
Device controller transfers blocks of data from
buffer storage directly to main memory without
CPU intervention
Only one interrupt is generated per block, rather
than the one interrupt per byte

COMPUTER-SYSTEM
ARCHITECTURE

Most systems use a single general-purpose
processor.
Most systems also have special-purpose
processors.
Multiprocessor systems are growing in use and
importance.
Also known as parallel systems or tightly-
coupled systems.

Advantages include:

Increased throughput
Economy of scale
Increased reliability – graceful degradation or
fault tolerance

Two types:

Asymmetric Multiprocessing (AMP): Each
processor is assigned a specific task.
Symmetric Multiprocessing (SMP): Each
processor performs all tasks.

SYMMETRIC MULTIPROCESSING
ARCHITECTURE

A DUAL-CORE DESIGN
Multi-chip and multicore
Systems containing all chips
Chassis containing multiple separate systems

CLUSTERED SYSTEMS
Multiple systems working together
Usually share storage via a Storage-Area Network
(SAN)

Provide high availability and survive failures

Asymmetric clustering: one machine in hot-
standby mode (monitors all)
Symmetric clustering: multiple active nodes
monitoring each other

Some clusters are for High-Performance
Computing (HPC)
Applications must support parallelization

Use Distributed Lock Manager (DLM) to prevent
conflicting operations

MULTIPROGRAMMING
(BATCH SYSTEM)

Needed for efficiency
A single user cannot keep CPU and I/O devices
busy at all times
Multiprogramming organizes jobs so CPU always
has one to execute

A subset of jobs is kept in memory
Job scheduling selects and runs one job at a time
When a job waits (e.g., for I/O), OS switches to
another job

TIME SHARING (MULTITASKING)
Logical extension in which CPU switches jobs so
frequently that users can interact with each job
while it is running, creating interactive
computing
Response time should be < 1 second
Each user has at least one program executing in
memory → process

If several jobs ready to run at the same time →
CPU scheduling
If processes don’t fit in memory, swapping moves
them in and out to run
Virtual memory allows execution of processes not
completely in memory

OPERATING-SYSTEM
OPERATIONS

Interrupt-driven: hardware and software
Hardware interrupt: generated by devices
Software interrupt (exception/trap):

Software errors (e.g., division by zero)
Requests for OS services

Other process issues: infinite loops, processes
modifying each other or the OS

DUAL-MODE
OPERATION

Allows OS to protect itself and other system
components
Two modes: User mode and Kernel mode
Mode bit provided by hardware to distinguish
user vs. kernel execution
Some instructions are privileged, only executable
in kernel mode

System call switches mode to kernel; return
resets to user
Modern CPUs support multi-mode operations
Example: Virtual Machine Manager (VMM) mode
for guest VMs

TIMER IN OPERATING SYSTEMS
Prevents infinite loops and processes hogging
resources
Timer set to interrupt after a defined time period
Uses a counter decremented by the physical
clock
OS sets the counter (privileged instruction)
When counter reaches zero → interrupt generated
Ensures OS can regain control or terminate long-
running processes

COMPUTING
ENVIRONMENTS

TRADITIONAL COMPUTING
Single-user or batch systems
Centralized processing on mainframes or PCs
Jobs executed sequentially, often non-interactive

MOBILE COMPUTING
Supports computing on handheld or portable
devices
Enables wireless connectivity, mobility, and
anytime access
Applications optimized for battery and resource
constraints

DISTRIBUTED COMPUTING
Multiple systems work together over a network
Share resources and collaborate on tasks
Provides scalability, fault tolerance, and parallel
processing

CLIENT-SERVER COMPUTING
Clients request services; servers provide them
Centralized control with multiple clients accessing
shared resources
Common in business applications and web
services

PEER-TO-PEER (P2P)
COMPUTING

All nodes act as both clients and servers
Resources and services shared directly among
peers
Examples: file-sharing networks, blockchain
networks

VIRTUALIZATION
Creates virtual versions of hardware, OS, storage,
or networks
Allows multiple VMs on a single physical host
Improves resource utilization and isolation

CLOUD COMPUTING
On-demand access to compute, storage, and
applications over the internet
Provides scalability, pay-as-you-go models, and
remote accessibility
Types: IaaS, PaaS, SaaS

REAL-TIME & EMBEDDED
SYSTEMS

Designed to respond to events within strict
timing constraints
Embedded in devices like sensors, controllers,
and industrial machines
Critical in applications like automotive, medical,
and avionics systems

OPERATING SYSTEM
SERVICES

USER-ORIENTED SERVICES
User Interface (UI): CLI, GUI, or batch
Program Execution: load, run, and terminate
programs
I/O Operations: access files or I/O devices
File-System Manipulation: read/write files,
create/delete directories, permissions, search,
listing
Communications: exchange information via
shared memory or message passing
Error Detection: monitor CPU, memory, I/O, and
user programs; ensure consistent computing

Debugging Facilities: assist users and
programmers

SYSTEM-ORIENTED SERVICES
Resource Allocation: assign CPU, memory,
storage, I/O devices to concurrent users/jobs
Accounting: track user resource usage
Protection & Security:

Control access to resources
Prevent interference among processes
User authentication and protection from
external threats

SYSTEM CALLS
Programming Interface to OS Services

High-level languages like C/C++ provide interfaces to
OS services.

Programs usually use an Application Programming
Interface instead of calling system calls directly.

Access via APIs

APIs offer easier function calls and abstractions,
reducing complexity and improving portability across

systems.

Common APIs

Win32 API for Windows systems
POSIX API for UNIX/Linux/Mac OS X

Java API for programs running on the JVM

EXAMPLE

SYSTEM CALL MAPPING
UNIQUE CALL NUMBERS

Each system call has a specific number used to index a
system-call table.

SYSTEM CALL INTERFACE
LOOKUP AND EXECUTION

The system-call interface checks the table and invokes
the corresponding kernel function.

It returns the status and any output produced by the
call.

PROGRAMMER VIEW
NO NEED TO KNOW INTERNAL IMPLEMENTATION

The programmer only needs to follow the API and
understand the OS behavior.

Internal mechanics of the system call remain hidden.

API ABSTRACTION
RUN-TIME SUPPORT LIBRARY

Most interaction with the OS is managed by a run-time
support library that comes with the compiler.

C Program invoking printf()

OPERATING SYSTEM STRUCTURE

A general-purpose operating system is a very large
program.

Different structural approaches include:

Simple structure (e.g., MS-DOS)
More complex monolithic structure (e.g., UNIX)
Layered design providing abstraction
Microkernel design (e.g., Mach)

MS-DOS Structure Design Goal MS-DOS was created
to offer maximum functionality using minimal space.

Lack of Modularity Organization It was not divided
into separate, well-defined modules.

Interface Characteristics Poor Separation Although
some structure exists, the interfaces and functionality

levels are not clearly separated.

LINUX SYSTEM STRUCTURE /
ARCHITECTURE

GARY KILDALL
EARLY BACKGROUND

Gary Kildall was an American computer scientist and
pioneer of personal computing.

He created CP/M, the first widely adopted OS for
microcomputers.

CP/M AND
INNOVATION

BREAKTHROUGH
CP/M provided a standard OS interface for early 8-bit

machines.
It inspired future OS designs, including MS-DOS.

IBM VISITS DIGITAL
RESEARCH
MISSED MEETING

In 1980, IBM approached Digital Research to license
CP/M for its upcoming PC.

A meeting failed due to scheduling and contract
disagreements.

MICROSOFT STEPS
IN

BILL GATES’ OPPORTUNITY
With no agreement from Digital Research, IBM turned

to Microsoft.
Microsoft acquired QDOS, modified it, and delivered

what became MS-DOS.

WHY I MENTIONED
Kildall is often discussed when explaining MS-DOS

because:

CP/M was its inspiration
A single failed business deal changed the course
of computing history

WHAT IS A PROCESS?
A process is a program that is currently being
executed.
Its execution moves step-by-step in a sequential
flow.

PROGRAM VS
PROCESS

Program

Passive
Stored on disk as an executable file

Process

Active in memory
Has registers, stack, resources, etc.

WHEN DOES A
PROGRAM BECOME A

PROCESS?
When the executable file is loaded into memory.
Operating system creates a process structure for
it.

MULTIPLE
PROCESSES FROM

ONE PROGRAM
The same program may run multiple times.
Each execution is a different process.
Example: Many users running the same
application independently.

PROCESS STATES
As a process runs, its state changes.
Typical states used by operating systems.

PROCESS STATES
New: Process is being created
Running: Instructions are being executed
Waiting: Waiting for an event
Ready: Waiting for CPU assignment
Terminated: Execution completed

Process Control Block (PCB) contains Information
associated with each process (also called task control

block)

•Process state – running, waiting, etc

•Program counter – location of instruction to next
execute

• CPU registers – contents of all process centric
registers

•CPU scheduling information- priorities, scheduling
queue pointers

•Memory-management information – memory
allocated to the process

•Accounting information – CPU used, clock time
elapsed since start, time limits

•I/O status information – I/O devices allocated to
process, list of open files

CPU SCHEDULING
BASICS

Aim: maximize CPU usage by fast process
switching
Scheduler chooses the next process for CPU
Processes move between different queues

SCHEDULING
QUEUES

Job queue: all system processes
Ready queue: processes in memory waiting for
CPU
Device queues: processes waiting for I/O

SHORT-TERM
SCHEDULER

Chooses the next process for the CPU
Allocates processor time
Often the only scheduler in simple systems
Runs very frequently (milliseconds), must be fast

LONG-TERM
SCHEDULER

Decides which processes enter the ready queue
Runs much less often (seconds or minutes)
Can afford slower decision-making

TYPES OF
PROCESSES

I/O-bound: spends more time performing
input/output, many short CPU bursts
CPU-bound: spends most time computing, few
long CPU burst.

CPU SCHEDULING
METRICS

TURNAROUND TIME
Time a process takes from arrival to completion.

Formula:
Turnaround time = Completion time −

Arrival time

WAITING TIME
Time a process waits in the ready queue before CPU

execution.

Formula:
Waiting time = Turnaround time − Burst

time

AVERAGE WAITING
TIME

Average time all processes spend waiting in the ready
queue.

Formula:
Average waiting time = (Total waiting
time of all processes) / (Number of

processes)

RESPONSE TIME
Time from process arrival until its first CPU execution.

Formula:
Response time = Start time − Arrival time

THROUGHPUT
Number of processes completed per unit time.

Formula:
Throughput = Number of processes
completed / Total execution time

Q1

Process Arrival Time Burst Time

P1 0 5

P2 2 3

P3 4 7

P4 6 2

Q2

Process Arrival Time Burst Time

P1 1 4

P2 3 6

P3 5 2

P4 7 8

Q3

Process Arrival Time Burst Time

P1 0 9

P2 1 5

P3 3 1

P4 4 4

Q4

Process Arrival Time Burst Time

P1 2 6

P2 4 3

P3 5 9

P4 8 2

Q5

Process Arrival Time Burst Time

P1 0 8

P2 1 2

P3 3 5

P4 6 4

DEADLOCK

MULTIPLE
PROCESSES

Several processes run concurrently and compete for
limited resources.

RESOURCE
REQUESTS
A process asks for resources.

If unavailable, it moves to a wait state.

WAIT STATE ISSUE
A waiting process may stay stuck if the resources it

needs are held by other waiting processes.

RESULT
Processes may never resume — a situation that can

lead to deadlock.

SYSTEM MODEL

RESOURCE REQUEST
RULE

A process must request a resource before using it and
release it after use.

RESOURCE LIMITS
A process cannot request more instances of a resource

than the system actually has.

EXAMPLE
If the system has 2 printers, no process can request 3

printers.

DEADLOCK
CHARACTERIZATION

Deadlock occurs when processes are stuck waiting for
resources held by each other, with no progress

possible.

FOUR NECESSARY
CONDITIONS

1. Mutual Exclusion – Resources are non-shareable.
2. Hold and Wait – A process holds one resource and

waits for another.
3. No Preemption – Resources cannot be forcibly

taken away.
4. Circular Wait – A circular chain of processes

exists, each waiting for a resource held by the
next.

RESOURCE
ALLOCATION GRAPH

DEFINITION
A deadlock can be represented using a directed

system resource-allocation graph.

GRAPH STRUCTURE
The graph has:

Vertices (V)
Edges (E)

VERTEX TYPES
Vertices are divided into two sets:

P = {P1, P2, …, Pn} → all active processes
R = {R1, R2, …, Rm} → all resource types

REQUEST EDGE
Pi → Rj

Process Pi has requested resource Rj and is waiting for
it.

ASSIGNMENT EDGE
Rj → Pi

An instance of resource Rj is allocated to process Pi.

EDGE TYPES
Pi → Rj → Request edge
Rj → Pi → Assignment edge

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

RAG WITH DEADLOCK

Graph With A Cycle But No Deadlock

METHODS FOR
HANDLING

DEADLOCKS

1. PREVENTION /
AVOIDANCE

Use protocols that ensure the system never enters a
deadlock state. (before occurance)

2. DETECTION &
RECOVERY

Allow deadlocks to occur, then detect and recover
from them. (after occurance)

3. IGNORE
DEADLOCKS

Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,

including UNIX

DEADLOCK
PREVENTION

Restrain the ways request can be made

Mutual Exclusion – not required for sharable
resources (e.g., read-only files); must hold for non-
sharable resources

Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any
other resources

Require process to request and be allocated
all its resources before it begins execution, or
allow process to request resources only when
the process has none allocated to it.
Low resource utilization; starvation possible

No Preemption –

If a process that is holding some resources
requests another resource that cannot be
immediately allocated to it, then all
resources currently being held are released

Preempted resources are added to the list of
resources for which the process is waiting

Process will be restarted only when it can regain
its old resources, as well as the new ones that it is
requesting

Circular Wait – impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration

DEADLOCK
AVOIDANCE

Requires that the system has some additional a priori
information available

Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

For example, in a system with one tape drive and
one printer, we might be told that process P will
request first the tape drive, and later the printer,
before releasing both resources. Process Q, on the
other hand, will request first the printer, and then
the tape drive.

SAFE STATE

When a process requests an available resource, system
must decide if immediate allocation leaves the system

in a safe state

If a system is in safe state -> no deadlocks
If a system is in unsafe state -> possibility of
deadlock
Avoidance -> ensure that a system will never enter
an unsafe state.

SAFE, UNSAFE, DEADLOCK STATE

SINGLE INSTANCE OF A RESOURCE TYPE

Use a resource-allocation graph
MULTIPLE INSTANCES OF A RESOURCE TYPE
Use the banker’s algorithm

BANKER'S ALGORITHM

Q1 Total resources = (A=11, B=6, C=9, D=7)

Q2 Available = (A = 3, B = 2, C = 1, D = 2)

Refer to
verify answers

https://os.surajgowda.in/scheduling-algo

https://os.surajgowda.in/scheduling-algo

